Toxic Images Animated Gif Animations 3D GIFs

Pages Toxic                                                                         
Click Text Gif = > Free HTML Gif
people hazmat suits gif
hazmat suits
Thank you for visiting! Enjoy!
Toxicity is the degree to which a substance can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). By extension, the word may be metaphorically used to describe toxic effects on larger and more complex groups, such as the family unit or society at large. Sometimes the word is more or less synonymous with poisoning in everyday usage.
A central concept of toxicology is that the effects of a toxin are dose-dependent; even water can lead to water intoxication when taken in too high a dose, whereas for even a very toxic substance such as snake venom there is a dose below which there is no detectable toxic effect. Toxicity is species-specific, making cross-species analysis problematic. Newer paradigms and metrics are evolving to bypass animal testing, while maintaining the concept of toxicity endpoints.
There are generally four types of toxic entities; chemical, biological, physical and radiation:
Chemical toxicants include inorganic substances such as, lead, mercury, hydrofluoric acid, and chlorine gas, and organic compounds such as methyl alcohol, most medications, and poisons from living things. While some weakly radioactive substances, such as uranium, are also chemical toxicants, more strongly radioactive materials like radium are not, their harmful effects (radiation poisoning) being caused by the ionizing radiation produced by the substance rather than chemical interactions with the substance itself.
Disease-causing microorganisms and parasites are toxic in a broad sense, but are generally called pathogens rather than toxicants. The biological toxicity of pathogens can be difficult to measure because the ,,threshold dose" may be a single organism. Theoretically one virus, bacterium or worm can reproduce to cause a serious infection. However, in a host with an intact immune system the inherent toxicity of the organism is balanced by the host's ability to fight back; the effective toxicity is then a combination of both parts of the relationship. In some cases, e.g. cholera, the disease is chiefly caused by a nonliving substance secreted by the organism, rather than the organism itself. Such nonliving biological toxicants are generally called toxins if produced by a microorganism, plant, or fungus, and venoms if produced by an animal.
Physical toxicants are substances that, due to their physical nature, interfere with biological processes. Examples include coal dust, asbestos fibers or finely divided silicon dioxide, all of which can ultimately be fatal if inhaled. Corrosive chemicals possess physical toxicity because they destroy tissues, but they're not directly poisonous unless they interfere directly with biological activity. Water can act as a physical toxicant if taken in extremely high doses because the concentration of vital ions decreases dramatically if there's too much water in the body. Asphyxiant gases can be considered physical toxicants because they act by displacing oxygen in the environment but they are inert, not chemically toxic gases.
As already mentioned, radiation can have a toxic effect on organisms.
For substances to be regulated and handled appropriately they must be properly classified and labelled. Classification is determined by approved testing measures or calculations and have determined cut-off levels set by governments and scientists (for example, no-observed-adverse-effect levels, threshold limit values, and tolerable daily intake levels). Pesticides provide the example of well-established toxicity class systems and toxicity labels. While currently many countries have different regulations regarding the types of tests, amounts of tests and cut-off levels, the implementation of the Globally Harmonized System has begun unifying these countries.
Global classification looks at three areas: Physical Hazards (explosions and pyrotechnics), Health Hazards and Environmental Hazards.
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:
electromagnetic radiation, such as radio waves, visible light, x-rays, and gamma radiation (γ)
particle radiation, such as alpha radiation (α), beta radiation (β), and neutron radiation (particles of non-zero rest energy)
acoustic radiation, such as ultrasound, sound, and seismic waves (dependent on a physical transmission medium)
gravitational radiation, radiation that takes the form of gravitational waves, or ripples in the curvature of spacetime.
Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 eV, which is enough to ionize atoms and molecules, and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms. A common source of ionizing radiation is radioactive materials that emit α, β, or γ radiation, consisting of helium nuclei, electrons or positrons, and photons, respectively. Other sources include X-rays from medical radiography examinations and muons, mesons, positrons, neutrons and other particles that constitute the secondary cosmic rays that are produced after primary cosmic rays interact with Earth's atmosphere.
Gamma rays, X-rays and the higher energy range of ultraviolet light constitute the ionizing part of the electromagnetic spectrum. The lower-energy, longer-wavelength part of the spectrum including visible light, infrared light, microwaves, and radio waves is non-ionizing; its main effect when interacting with tissue is heating. This type of radiation only damages cells if the intensity is high enough to cause excessive heating. Ultraviolet radiation has some features of both ionizing and non-ionizing radiation. While the part of the ultraviolet spectrum that penetrates the Earth's atmosphere is non-ionizing, this radiation does far more damage to many molecules in biological systems than can be accounted for by heating effects, sunburn being a well-known example. These properties derive from ultraviolet's power to alter chemical bonds, even without having quite enough energy to ionize atoms.
The word radiation arises from the phenomenon of waves radiating (i.e., traveling outward in all directions) from a source. This aspect leads to a system of measurements and physical units that are applicable to all types of radiation. Because such radiation expands as it passes through space, and as its energy is conserved (in vacuum), the intensity of all types of radiation from a point source follows an inverse-square law in relation to the distance from its source. This law does not apply close to an extended source of radiation or for focused beams.
Radiation with sufficiently high energy can ionize atoms; that is to say it can knock electrons off atoms and create ions. Ionization occurs when an electron is stripped (or ,,knocked out") from an electron shell of the atom, which leaves the atom with a net positive charge. Because living cells and, more importantly, the DNA in those cells can be damaged by this ionization, exposure to ionizing radiation is considered to increase the risk of cancer. Thus ,,ionizing radiation" is somewhat artificially separated from particle radiation and electromagnetic radiation, simply due to its great potential for biological damage. While an individual cell is made of trillions of atoms, only a small fraction of those will be ionized at low to moderate radiation powers. The probability of ionizing radiation causing cancer is dependent upon the absorbed dose of the radiation, and is a function of the damaging tendency of the type of radiation (equivalent dose) and the sensitivity of the irradiated organism or tissue (effective dose).
If the source of the ionizing radiation is a radioactive material or a nuclear process such as fission or fusion, there is particle radiation to consider. Particle radiation is subatomic particles accelerated to relativistic speeds by nuclear reactions. Because of their momenta they are quite capable of knocking out electrons and ionizing materials, but since most have an electrical charge, they don't have the penetrating power of ionizing radiation. The exception is neutron particles; see below. There are several different kinds of these particles, but the majority are alpha particles, beta particles, neutrons, and protons. Roughly speaking, photons and particles with energies above about 10 electron volts (eV) are ionizing (some authorities use 33 eV, the ionization energy for water). Particle radiation from radioactive material or cosmic rays almost invariably carries enough energy to be ionizing.
Much ionizing radiation originates from radioactive materials and space (cosmic rays), and as such is naturally present in the environment, since most rock and soil has small concentrations of radioactive materials. The radiation is invisible and not directly detectable by human senses; as a result, instruments such as Geiger counters are usually required to detect its presence. In some cases, it may lead to secondary emission of visible light upon its interaction with matter, as in the case of Cherenkov radiation and radio-luminescence.
Ionizing radiation has many practical uses in medicine, research and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure and death, while any dose may result in an increased chance of cancer and genetic damage; a particular form of cancer, thyroid cancer, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product, iodine-131. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based on data from the atomic bombing in Japan and from reactor accident follow-up, such as with the Chernobyl disaster. The International Commission on Radiological Protection states that ,,The Commission is aware of uncertainties and lack of precision of the models and parameter values", ,,Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and ,,in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."
Source: Wikipedia

No comments: